Go to the source code of this file.
|
comple | det (const zhemat2 &A) |
|
zhemat2 | inv (const zhemat2 &A) |
|
comple | det (const zhemat3 &A) |
|
zhemat3 | inv (const zhemat3 &A) |
|
comple det |
( |
const zhemat2 & |
A | ) |
|
|
inline |
zhemat2 inv |
( |
const zhemat2 & |
A | ) |
|
|
inline |
calculate inverse
Definition at line 10 of file zhematrix_small-specialized.hpp.
References det().
12 const comple Adet(
det(A) );
14 Ainv(0,0)= A(1,1)/Adet;
15 Ainv(1,0)=-A(1,0)/Adet; Ainv(1,1)= A(0,0)/Adet;
comple det(const zhemat2 &A)
comple det |
( |
const zhemat3 & |
A | ) |
|
|
inline |
calculate determinant
Definition at line 25 of file zhematrix_small-specialized.hpp.
28 +A(0,0)*A(1,1)*A(2,2) -A(0,0)*A(2,1)*A(2,1)
29 +A(1,0)*A(2,1)*A(2,0) -A(1,0)*A(1,0)*A(2,2)
30 +A(2,0)*A(1,0)*A(2,1) -A(2,0)*A(1,1)*A(2,0);
zhemat3 inv |
( |
const zhemat3 & |
A | ) |
|
|
inline |
calculate inverse
Definition at line 35 of file zhematrix_small-specialized.hpp.
References det().
37 const comple Adet(
det(A) );
39 Ainv(0,0) =(A(1,1)*A(2,2)-A(2,1)*A(2,1))/Adet;
40 Ainv(1,0) =(A(2,1)*A(2,0)-A(1,0)*A(2,2))/Adet;
41 Ainv(1,1) =(A(0,0)*A(2,2)-A(2,0)*A(2,0))/Adet;
42 Ainv(2,0) =(A(1,0)*A(2,1)-A(1,1)*A(2,0))/Adet;
43 Ainv(2,1) =(A(1,0)*A(2,0)-A(0,0)*A(2,1))/Adet;
44 Ainv(2,2) =(A(0,0)*A(1,1)-A(1,0)*A(1,0))/Adet;
comple det(const zhemat2 &A)